15 research outputs found

    An overview of medical image processing methods

    Get PDF
    Since human life is worthier than all things, efforts on virtual animation and visualization of human body’s viscera, without surgical interference to diagnose a disease is very important. Recently, modern medical instruments are able to produce views which can be used for better diagnoses and accurate treatment. Various standards were formed regarding these instruments and end products that are being used more frequently everyday. Personal computers (PCs) have reached a significant level in image processing, carried analysis and visualization processes which could be done with expensive hardware on doctors’ desktops. The next step is to try to find out proper solutions by software developers andengineers that help doctors to make decision by combining opportunities in these two scientific areas. The objective of the present study is to construct 3D models and present it to users on screen in personal computers by using data acquired from tomography and magnetic resonance instruments. In order to realize this objective, developing software is aimed. In the second and third sections, the datastructures and processing of 3D volumetric data in digital format, 3D visualization techniques and theoretical subjects about methods and algorithms used are explained. In the forth section, explanations on developing a software package for the realization of the objective of the study, its usage and information about software development tools used are given. In the last section, the determinations made at the end of trials in this study, difficulties met and recommendations obtained in the light of the trial results are presented

    Human Papillomavirus-16 E7 Interacts with Glutathione S-Transferase P1 and Enhances Its Role in Cell Survival

    Get PDF
    Background:Human Papillomavirus (HPV)-16 is a paradigm for "high-risk" HPVs, the causative agents of virtually all cervical carcinomas. HPV E6 and E7 viral genes are usually expressed in these tumors, suggesting key roles for their gene products, the E6 and E7 oncoproteins, in inducing malignant transformation.Methodology/Principal Findings:By protein-protein interaction analysis, using mass spectrometry, we identified glutathione S-transferase P1-1 (GSTP1) as a novel cellular partner of the HPV-16 E7 oncoprotein. Following mapping of the region in the HPV-16 E7 sequence that is involved in the interaction, we generated a three-dimensional molecular model of the complex between HPV-16 E7 and GSTP1, and used this to engineer a mutant molecule of HPV-16 E7 with strongly reduced affinity for GSTP1.When expressed in HaCaT human keratinocytes, HPV-16 E7 modified the equilibrium between the oxidized and reduced forms of GSTP1, thereby inhibiting JNK phosphorylation and its ability to induce apoptosis. Using GSTP1-deficient MCF-7 cancer cells and siRNA interference targeting GSTP1 in HaCaT keratinocytes expressing either wild-type or mutant HPV-16 E7, we uncovered a pivotal role for GSTP1 in the pro-survival program elicited by its binding with HPV-16 E7.Conclusions/Significance:This study provides further evidence of the transforming abilities of this oncoprotein, setting the groundwork for devising unique molecular tools that can both interfere with the interaction between HPV-16 E7 and GSTP1 and minimize the survival of HPV-16 E7-expressing cancer cells. © 2009 Mileo et al
    corecore